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Abstract. The discrete spectrum for a Morse oscillator is found using an SO(2, 1) algebra. 
Since this algebra does not prove to be appropriate to compute matrix elements for the 
oscillator eigenfunctions, we construct a B1-type algebra with the aid of an auxiliary angle 
variable. Matrix elements and recurrence relations are found for several useful operators 
using this algebra. The limit in which the anharmonicity tends to zero is studied. 

1. Introduction 

In this paper we present the solution for the bound-state problem of a Morse oscillator 
in one dimension (Morse 1929) using two different Lie algebras. Many quantum- 
mechanical problems have been studied using operator methods (Wybourne 1974), in 
particular, the harmonic oscillator (Louise11 1973), the Coulomb problem (Englefield 
1972, Barut and Kleinert 1967, Bednhi 1973) and angular momentum (Edmonds 
1957). Little attention, however, has been paid to the Morse potential well, in spite of 
its practical importance in analysing anharmonic vibrations (Pauling and Wilson 1935, 
Huffacker 1976), molecular energy transfer (Rapp and Kassal 1969) and atom-surface 
scattering (Cabrera et a1 1970). The algebraic approach is proving to be a basic tool in 
the study of inelastic collisions (Alhassid and Levine 1978). Hence a thorough 
understanding of the time honoured Morse oscillator in algebraic terms seems appro- 
priate. 

Ladder operators for the bound states have been known since the exhaustive work 
of Infeld and Hull (1951), and some of their properties have been exploited in 
vibrational problems (Huff acker and Dwivedi 1975). These ladder operators were first 
obtained with the aid of the factorisation method (Infeld and Hull 1951). They depend 
explicitly on the vibrational quantum number, so they are well defined as long as they 
act upon a specified eigenstate. 

As a generalisation of the two different types of factorisation (types B and F) (Infeld 
and Hull 1951), we obtain in this work two different Lie algebras for the Morse 
oscillator. The first one is a realisation of an SO(2, 1) algebra. It follows from a B-type 
factorisation. Indeed, the Schrodinger equation for the Morse potential is equivalent 
(Morse 1929) to the radial equation of the Coulomb problem. This in turn is associated 
with an SO(2 , l )  algebra (Armstrong 1970,1971, &ek and Paldus 1977). It is found, 

8 O n  leave from Instituto de Fisica, University of MCxico, Apdo Postal 20-364, Mtxico 20, DF,  Mexico. 
/ I  Consultant at Instituto Mexicano del Petrbleo. 
7 Also at Escuela Superior de Fisica y Matemiticas (IPN). 

0305-4470/80/030773 + 08$01.00 0 1980 The Institute of Physics 773 



774 M Berrondo and A Palma 

however, that the ladder operators in this algebra shift the well's depth at constant 
energy (Huffacker and Dwivedi 1975). In other words, two eigenstates of the Morse 
oscillator correspond to different irreducible representations (IR) of the group 
SO(2, 1). Therefore, matrix elements between different energy states are awkward to 
compute in this scheme. 

A different approach to the problem consists of introducing an auxiliary variable 
(Armstrong 1970, 1971, Crubellier and Feneuille 1974, Miller 1968) in order to build 
an SO(3) algebra or, more properly, a &-type algebra (Miller 1968). This approach 
corresponds to the F-type factorisation (Infeld and Hull 1951). The associated ladder 
operators shift the vibrational quantum number by one unit. We are then able to 
compute matrix elements for different bound states. The auxiliary variable can be 
taken as a dummy angle ranging from 0 to 21r. Alternatively, it may be interpreted as a 
dilated time (Anderson et al 1973) when working in the Schrodinger picture (Chacon 
et a1 1976). The time dilation is introduced in order to 'linearise the energy spectrum' 
(Anderson et a1 1973). The resulting operators include (partial) derivatives with 
respect to the dilated time. A similar B1 algebra can be defined for the hydrogen atom 
problem. There the ladder operators will have the effect of shifting the angular 
momentum in the radial equation (Herrick and Sinanoglu 1972). 

Finally, if we let the anharmonicity parameter in the Morse potential go to zero, we 
recover the harmonic oscillator. In this case, the algebra is contracted into the algebra 
of the harmonic oscillator as we show below. 

In 0 2, we define the SO(2, 1) algebra for the Morse potential, following the 
constructive approach of ki iek and Paldus (1977). Using this algebra, we derive 
the discrete spectrum, with the aid of its Casimir operator. In 8 3, we make use of the 
auxiliary variable to obtain the R I  algebra. We then show how the matrix elements for 
different operators can be calculated. We also discuss the hermiticity properties of the 
ladder operators in the physical metric. Section 4 shows how the harmonic limit is 
attained. Finally, in 0 5 we present a brief comparison between the two algebras, and 
point out some further developments. 

2. The discrete spectrum 

The Morse potential is defined in terms of two constants, the potential depth D and an 
inverse distance a : 

V ( U )  = D e-2au - 20 e-au. (2.1) 

Here we have chosen the origin u = 0 as the equilibrium distance. The potential tends 
to zero asymptotically as U += CO, so its minimum is V ( u  = 0) = -D. Throughout this 
work we shall take equation (2.1) as a one-dimensional potential (Morse 1929, Pauling 
and Wilson 1935). This implies that the eigenfunctions vanish at U + *.CO. 

It is convenient to define a dimensionless distance x = au and to introduce the 
(inverse) anharmonicity constant K :  

K = J2moD/ha, ( 2 . 2 )  

given in terms of the reduced mass mo. The Schrodinger equation for S ( x )  is then 

(d2S(x)/dx2) + [ E  +K2(2e-" -e-2")]S(x) = 0 (2.3) 
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where E is the dimensionless energy E = 2m0E/h2a2. Choosing S ( x )  as a normalised 
function, we have that 

for any bound states n and m. 

and function (Morse 1929): 
Equation (2.3) is transformed into a simpler form with a further change of variable 

The equation for $(y) is 

d2$(y)/dy2+[(E ++)y-'+2Ky-'- l]$(y)=O, (2.6) 

which can be rewritten as an eigenvalue equation for K (cf BednAi 1973 for the 
Coulomb case). Introducing the canonical momentum p = -id/dy, we get 

$[yp2- ( E  +$)y-' + y]$ = K$. (2.7) 

In order to define the proper SO(2 , l )  algebra, we first notice that the operators y, 
yp and yp2 close under commutation (kiiek and Paldus 1977). Since adding a term 
proportional to y-' to the latter does not change the commutators, we write 

W1=y W2 = YP W3 = YP - [ ( E  + $I/ Y 1. (2.8) 
The relations 

[WI, W21=i WI [ W2, i W3 [ WI, WJ = 2 i W2 (2.9) 

can be obtained directly from the canonical one [y, p ]  = i. 
Comparing (2.8) with the eigenvalue equation (2.7), we define 

(2.10a) T -1 3-2(W1+ W3) 

and the corresponding ladder operators are 

T,=$(W3- Wl)*i W2. (2.10b) 

From (2.8) it indeed follows that {T3, T,, T-} form an SO(2, 1) algebra: 

[T3, TiI=*T* [T+, T-]=-2T3. (2.1 1) 

We see immediately that the ladder operators T,  shift the value of K + K f 1 for a 
given energy E .  They change the potential parameters, but not the energy. The 
corresponding Casimir operator is 

C 2  = T: T3 - T, TF = - E  - a. (2.12) 

Using (2.12) and the commutation relations (2.11), we can determine the energy 
spectrum: for any given (negative) energy E ,  there is a minimum value of K for which 
such an eigenfunction exists. Calling this value KO, and the corresponding eigen- 
function JI0, we have that 

T3$0 = KOGO T - $0 = 0. (2.13) 
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Since T++K c ~ i , h ~ + ~ ,  the eigenvalues of T3 are given by K = K o + n ,  where n = 
0 , 1 , 2 , .  . . . From (2.12) and (2.13), we then get 

(2.14) (T:  - T3 - C2)i,ho = [(KO - $)'+ E ] + O  = 0 ,  

which finally yields 
1 2  

E ,  = -(K - n - 3) (2.15) 

in terms of the actual K. For fixed K, n = 0 ,  1 , 2 , .  . . , ( K  -i), so that the largest integer 
in K +3 gives the number of bound states. If K is smaller than 3, the potential does not 
support any bound state (Morse 1929). 

Although the problem is similar to the hydrogen atom, there is an important 
difference. In the Coulomb problem, in order to rewrite the equation as an eigenvalue 
equation for the charge, it is necessary to make a space dilation r + r/n which depends 
on the energy through the quantum number n. This implies different dilations for 
different eigenstates. For the Morse oscillator, however, the necessary dilation depends 
only on the potential parameters. It is implicitly introduced in equation (2 .5):  e-' + 
K e-'. In fact, in terms of the variable x, it reduces to a (constant) translation 
x + x  -In K. 

3. Auxiliary angle variable and matrix elements 

3.1. The BI  algebra 

The solutions to the K eigenvalue equation (2.7) found above form the basis for an IR 
of the group S O ( 2 , l ) .  These IR's are labelled by the value of KO, and hence by the 
energy, while their rows determine the actual value of K. Computing matrix elements 
for different energies would then correspond to choosing two different IR's, rather than 
two rows of the same IR. 

In the present section, we define a new algebra which has the virtue of exchanging 
these roles. It is based on an F-type factorisation of equation (2.6) (Infeld and Hull 
1951). The explicit appearance of the quantum number n in this factorisation 
(Huffacker and Dwivedi 1975) suggests the introduction of a new variable 4 (Miller 
1968) and the associated momentum: 

Go = -ia/a4. (3 .1)  
For vibrational states, 4 ranges from 0 to 2 r .  Regarding the variable y ,  it is convenient 
to introduce an extra K factor: 

r = K 2  e-' (CO> r 2 0 ) .  (3 .2)  
We also define states in the ( r ,  4) space, which are eigenstates of Go, as 

x,(r) = K e-""S,(x) 

is a solution of 

(3.36 

(3.4 
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which follows directly from (2.6), and we have labelled p = K -n -+, according to 
(2.15). The functions xF are orthonormal in the physical metric r-' dr:  

The generalisation of the operator in (3.4) to the (r, 4) space is simply 

(3.6) 

so that 

ZIP) = K-21P). (3.7) 

An important point to notice is that the operator 9 is not self-adjoint in the physical 
metric defined in (3.5). 

The factorisation of the operator 2 is achieved using the two operators G, (Herrick 
and Sinanoklu 1972): 

G, = K e"'((Go*~)2r-1F(Gof~)(a/ar)- 1). (3.8) 

Indeed, using the relations 

e*i' ( Go f 1) = (Go F 2) e*i', (3.9) 

we obtain 

G,G, = K2[1 - (Go ?4)*2]. (3.10) 

From the equations above we obtain the commutation relations 

[GO, G,] = * G* [G+, G-]=2GoI (3.11) 

which identify {Go, G+, G-} as a realisation of a B1 algebra (Miller 1968). Here I is the 
identity operator in the space spanned by the kets Ip), and G, are the ladder operators: 

(3.12) 

The constants A; are chosen so that the kets 1p * 1) remain normalised in the physical 
metric. They have to be computed taking into account the fact that G,, G- are not the 
adjoint of one another. Indeed, for the metric in (3.5), there is an additional term 2 / r  
when calculating the adjoint of alar, which results in 

(G,)'= GFF2Krf1  e"'(Gori) (3.13) 

when we take the adjoint of equation (3.8). The term in l / r  above can be re-expressed 
in terms of the ladder operators as 

r-' = (Gi -i)-' +iK-'Gi' [(Go + i)-' e-i'G+ + (Go --$' e"G-1. (3.14) 

As usual, to calculate the proportionality constants A:, we evaluate the expectation 
value of G,G, in the (r, 4) space, so using equations (3.7) and (3.10)-(3.14) we get 

( p  /G,G&) = K 2 -  ( p  = lAZl2(1 7 F- ' ) .  (3.15) 

The extra +p-' term can be traced back directly to the extra term in (3.13). It does not 
appear in the usual angular momentum SO(3) algebra, where J ,  is the adjoint of J-  

e i ~ d  e i ( ~ * l M  

G&) = G,=,yF(r) =A:-  xF*l(r) = AEIp * 1). 
J2rr J2T 
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(Edmonds 1957, Miller 1968). With the usual choice of phase, we finally obtain 

(3.16) 

3.2. The matrix elements 

In order to preserve the orthogonality of S,+(x), we have introduced the metric d 4  r-’ dr 
for the kets IF). Hence, a knowledge of the coefficients A: allows us to calculate matrix 
elements for operators expressed in terms of the generators of the algebra. In 
particular, since r-‘ is a linear combination of G+ and G-, we have a selection rule 
v = y, y f 1 for this operator (Huffacker and Dwivedi 1975). Actually, using (3.141, we 
get 

(3.17) 

with A; given by (3.16), and w = K - n  -1  in terms of the number of quanta n. By the 
same token, 

(3.18) 

Next, we obtain a recurrence relation for the matrix elements of rQ in terms of rei’, 

(3.19) 

To this end, we compute the commutator of 2 with rn+’: 

[T: ro1+2] = (a  + 1)(a + 2)rQ + 2(a  + 2)rff+’a/ar. 

Using now the adjoint of 3, 

2‘ = 2 + 6 Y 2  -4r-’alar, (3.20) 

we calculate the matrix element of the commutator (3.19): 

(xuI[2, r a + 2 ] 1 ~ f i )  =(vi ei(u-F)’[T, rQ-2]lp)  = (vj e”’-f i”(Tra+2- rf f+22)ly) .  (3.21) 

Substituting for alar the expression in terms of G,, from their definition (3.8),  we finally 
get the desired recurrence relation: 

In particular, equation (3.17) follows from the above for a = -1. 

4. The harmonic limit 

(3.22) 

We now turn our attention to the case in which the Morse potential admits many bound 
states, and approaches a harmonic oscillator potential. Expanding (2.1) in powers of 
au, we get 

w(u)=D+ ~ ( u ) = ~ a ~ ( u ~ - a u ~ + *  1. (4.1) 
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Letting a + 0 and D .+ 00, but keeping the force constant k ,  = 2Da2 finite, the (inverse) 
anharmonicity parameter K + 00, the number of bound states increases, and we get the 
harmonic limit W = $k,u2. 

We now want to study the contraction of the algebra {GO, G+, G-} in this limit. For 
any finite value of the number of quanta n, we have that ,U + K, and hence 

(4.2) GoIPL) = ,U IP)+ KIF), 

so that Go becomes the identity operator times K. On the other hand, expanding the 
exponential in (3.2), we get for G, 

where a&= Jmow/h  remains fin& in t& harmonic limit. Hence the algebra 
{Go, G,, G-} contracts into {K.I, J2KA, J2KA'}, where 

[A, A'] = I. (4.4) 
This commutation relation is the limit of (3,11a), and the operators A t  and A are the 
usual harmonic creation and annihilation operators. In this limit A and A t  become the 
adjoint of one another, as they should, while (3.16) reduces to 

A(n)  = dhln - 1) A'ln) = J n + l / n  +I).  (4.5) 

The factor [,u/(,u i 1)]1'2 in (3.16) tends to one in this limit, since ,U +CO for any finite 1 2 .  

5. Discussion 

The S O ( 2 , l )  algebra found in Q 2 seems more appropriate for obtaining the discrete 
spectrum of the Morse oscillator. The spectrum is obtained by solving for the energy in 
terms of the anharmonicity parameter K. This in turn is the eigenvalue of the operator 
T3 in the algebra. To be able to calculate matrix elements between different energy 
eigenfunctions, it is necessary to introduce an additional variable and define tensor 
operators (Armstrong 1970). These tensors are not irreducible, but are indecompos- 
able in this case (Chac6n et a1 1976). The matrix elements can thus be expressed in 
terms of the Wigner coefficients for the SO(2,l)  group (Holman and Biedenharn 1966). 

The alternative route, followed in this paper, is to find an appropriate algebra whose 
ladder operators shift the value of the energy itself, rather than the potential 
parameters. The resulting Lie algebra is a realisation of a B1 algebra. The generators of 
this algebra do not present the usual adjointness properties of an SO(3) algebra when 
using the scalar product with physical meaning for the Morse oscillator. This, however, 
is not a real shortcoming for the computation of matrix elements for operators which are 
expressible in terms of the generators. This is done in a straightforward way without the 
need to define tensor operators. 

These matrix elements can be used in perturbation expansions in which the Morse 
vibrational states are used as a starting point. These are utilised in spectroscopic 
problems for diatomic molecules (Huffacker 1976). In the case of dynamic problems 
involving the Morse oscillator, such as the problem of vibrational energy transfer for 
simple molecules (Rapp and Kassal 1969), or collinear reactive collisions (Hofacker 
and Levine 1971), a better approximation is usually required. Algebraic methods like 
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the ones developed in this paper allow for the evaluation of the corresponding transition 
probabilities (Levine and Wulfman 1979) in a non-perturbative fashion. Further work 
along these lines will be reported elsewhere. 
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